
On Specification and Verification of

Location-based Fault Tolerant Mobile Systems

Alexei Iliasov, Victor Khomenko, Maciej Koutny and Alexander Romanovsky

School of Computing Science, University of Newcastle
Newcastle upon Tyne, NE1 7RU, United Kingdom

Abstract. In this paper, we investigate context aware location-based
mobile systems. In particular, we are interested how their behaviour, in-
cluding fault tolerant aspects, could be captured using a formal semantics
amenable to rigorous analysis and verification. We propose a new formal-
ism and middleware called Cama, which provides a rich environment to
test our approach. The approach itself aims at giving Cama a concur-
rency semantics in terms of a suitable process algebra, and then applying
efficient model checking techniques to the resulting process expressions
in a way which alleviates the state space explosion. The model checking
technique adopted in our work is partial order model checking based on
Petri net unfoldings, and we use a semantics preserving translation from
the process terms used in the modelling of Cama to a suitable class of
high-level Petri nets.

1 Introduction

Mobile agent systems are increasingly attracting attention of software engineers.
However, issues related to fault tolerance and exception handling in such systems
have not received yet the level of attention they deserve. In particular, formal
support for validating the correctness and robustness of fault tolerance properties
is still under-developed. In this paper, we will outline the initial steps of our
approach to dealing with such issues in the context of a concrete system for
dealing with mobility of agents (Cama), and a concrete technique for verifying
their properties (partial order model checking). Our aim in this paper is to
present a formal model for the specification, analysis and model checking of
Cama designs. In doing so, we will use process algebras and Petri nets.

In concrete terms, our approach is first to give a formal semantics (including a
compositional translation) of a suitably expressive subset of Cama in terms of an
appropriate process algebra and its associated operational semantics. The reason
why we chose a process algebra semantics is twofold: (i) process algebras, due to
their compositional and textual nature, are very close to the actual notations and
languages used in real implementations; and (ii) there exists a significant body
of research on the analysis and verification of process algebras. In our particular
case, there are two process algebras which are directly relevant to Cama, viz.
Klaim [2] and π-calculus [9], and our intention is to use the former as a starting
point for the development of the formal semantics.

2 Location-based fault tolerant mobile systems

The design of our system has been strongly influenced by Linda [6], which is a
set of language-independent coordination primitives that can be used for com-
munication and coordination between several independent pieces of software.
Thanks to its language independence, Linda has become quite popular, and
many programming languages have one or more implementations of its coordi-
nation primitives. Coordination primitives presented in Linda allow processes
to put, get and test for tuples in a tuple space shared by the running processes.
A tuple is a vector of typed data values some of which can be empty (in which
case they match any value of a given type). Certain operations, such as get and
test, can be blocking. This provides effective inter-process coordination; other
kinds of coordination primitives, such as semaphores, can be readily simulated.

We will use an asymmetric communication scheme which is closer to the
traditional service provision architectures. It is based on the concept of a fairly
reliable infrastructure-provided wireless connectivity. (The alternative symmet-
ric scheme can also operate in ad-hoc networks and all the coordination func-
tionality is implemented by the agents.) In the asymmetric scheme, the larger
part of the coordination logic is moved to a location server. This approach is
able to support large-scale mobile agent networks in a predictable and reliable
manner. It makes better use of the available resources since most of the opera-
tions are executed locally. Moreover, the asymmetric architecture eliminates the
need for employing complex distributed algorithms or any kind of remote access.
This allows us to guarantee atomicity of certain operations without sacrificing
performance and usability. Another advantage is that it provides a natural way
of introducing context-aware computing by defining location as a context. The
main disadvantage of the location-based scheme is that an additional infrastruc-
ture is always required to support mobile agent collaboration.

A Cama (context-aware mobile agents) system consists of a set of locations,
and active entities of the system, called agents. An agent is a piece of software
which is executed on its own platform, providing execution environment interface
to the location middleware. Agents can only communicate with other agents in
the same location. Agents can migrate logically (connection and disconnection)
or physically (e.g., movement of a PDA on which the agent is hosted on) from
a location to a location. Agents can also migrate logically from platform to
platform using weak code mobility (transfer of application code or its parts from
one host to another without retaining the execution state). Compatible agents
(i.e., agents capable of cooperation in certain conditions in order to achieve
individual agent goals and in accordance to the abstract specification of the
whole system) collaborate through a scoping mechanism, where a scope defines
a joint activity of several agents. Scoping mechanism also isolates non-compatible
agents from each other. More details about the introduced concepts are provided
below.
Scope is a dynamic container for tuples. It provides an isolated coordination
space for compatible agents, by restricting the visibility of tuples contained
within the scope to the participants of the scope. A scope is initiated by an agent

and then atomically created by a location when all the participating agents are
ready. It is defined by the set of roles, a minimal required number of active roles,
and a maximal allowed number of active roles. Scopes can be nested as scope
participants can create new contained scopes.

Role is an abstract description of agent functionality. Each role is associated
with some abstract scope model. Agent may implement a number of roles and
can also play several roles within the same scope or different scopes. There is a
formal relationship between a scope and its role. The latter is formally derived
from an abstract model through decomposition process, while the former is a
run-time instantiation of such an abstract model as it is formed via a composition
of agent roles (for more discussion see [7]).

Location is a container for scopes. It can be associated with a particular physical
location and can have certain restrictions on the types of supported scopes.
It is the core part of the system as it provides means of communication and
coordination between agents. We may assume that each location has a unique
name. This roughly corresponds to IP addresses of hosts in a network which
are often unique in some local sense. A location must keep track of the agents
present and their properties in order to be able to automatically create new
scopes and restrict access to the existing ones. Locations may provide additional
services that can vary from location to location. These are made available to
agents via what appears as a normal scope though some roles are implemented
by the location system software. As with all the scopes, agents are required
to implement specific roles in order to connect to a location-provided scope.
Examples of such services include printing on a local printer, Internet access,
making a backup to a location storage, and migration. In addition to supporting
scopes as means of agent communication, locations may also support logical
mobility of agents, hosting of platforms and agent backup. Hosting of platform
on a location allows an agent to run without a support from, say, a PDA. For
example, a user may decide to move an agent from the PDA to a location
before leaving the location. When requested by an agent, a location may play
in certain types of scopes the role of a trusted third party that is neutral to all
the participating agents. This facilitates implementation of various transaction
schemes.

Platform provides an execution environment for an agent. It is composed of
a virtual machine for code execution, networking support, and middleware for
interacting with a location. A platform may be supported by a PDA, smartphone,
laptop or a location server. The notion of a platform is important to clearly
differentiate between the concept of a location providing coordination services
to agents, and the middleware that only supports agent execution. In other
approaches no such distinction is usually made [10, 3, 11].

Agent is a piece of software implementing a set of roles which allow it to take
part in certain scopes. All agents must implement some minimal functionality,
called the default role, which specifies their activities outside of all the scopes.

3 A process algebra for CAMA systems

The semantical model of Cama will be captured using a process algebra based
on Klaim [2] and also the π-calculus [9]. We now briefly outline some key aspects
of this development (see [5] for details).

We assume that L is a set of localities ranged over by l, l′, l1, . . . and a disjoint
set U of locality variables ranged over by u, v, w, u′, v′, w′, u1, v1, w1, (We also
assume that a special locality self belongs to L.) Their union forms the set of
names ranged over by `, `′, `1, In addition, A = {A1, . . . , Am} is a finite set
of process identifiers, each identifier A ∈ A having a finite arity nA.

The syntax comes in four parts: networks, actions, processes and templates.

N ::= l :: P p l :: 〈l〉 p N ‖N (networks)

a ::= out(`)@` p in(T)@` p eval(A(`1, . . . , `nA
))@` (actions)

P ::= nil p A(`1, . . . , `nA
) p a . P p P + P p P |P (processes)

T ::= ` p !z (templates)

Moreover, for each A ∈ A, there is exactly one definition A(u1, . . . , unA
)

df

= PA,
which is available across the whole network.

Networks are finite collections of computational nodes, where data and pro-
cesses can be located. Each node consists of a locality l identifying it and a
process or a datum (itself a locality in this simple presentation). There can be
several nodes with the same locality part. Effectively, one may think of a net-
work as a collection of uniquely named nodes, each node comprising its own data
space and a possibly concurrent process which runs there (for simplicity, we as-
sume that only singleton tuples are stored). This view is embodied in the rules
for structural equivalence on nodes and networks, such as N1 ‖N2 ≡ N1 ‖N2,
(N1 ‖N2) ‖N3 ≡ N1 ‖ (N2 ‖N3) and l :: (P1|P2) ≡ l :: P1 ‖ l :: P2.

Actions are the basic (atomic) operations which can be executed by processes,
as follows: out(`′)@` deposits a fresh copy of `′ inside the locality addressed by `;
in(T)@` retrieves an item matching the template T from the locality addressed
by `; and eval(A(`1, . . . , `nA

))@` instantiates a new copy of the process identified
by A in the locality addressed by `.

Processes act upon the data stored at various nodes and spawn new pro-
cesses. The algebra of processes is built upon the (terminated) process nil and
three composition operators: prefixing by an action (a . P); choice (P1 +P2); and
parallel composition (P1|P2).

The action prefix in(!z)@` . P binds the locality variable z within P , and we
denote by fn(P) the free names of P (and similarly for networks). For the process
definition, we assume that fn(PA) ⊆ {u1, . . . , unA

}. Processes are defined up to
the alpha-conversion, and {`/`′, . . .}P will denote the agent obtained from P by
replacing all free occurrences of `′ by `, etc, possibly after alpha-converting P
in order to avoid name clashes. We assume that a network is well-formed, i.e.,
no name across the network and process definitions is both free and bound, it
never generates more than one binding, and there are no free locality variables.

The operational semantics of networks and processes is based on the struc-
tural equivalence ≡ and labelled transition rules providing the record of an ex-
ecution, e.g., output and input involve the following SOS rules:

if ` = self then l′′ = l else l′′ = `

l :: out(`)@l′ .P
o(l,l′′,l′)
−−−−−−−−→ l :: P ‖ l′ :: 〈l′′〉

l :: in(!z)@l′ .P ‖ l′ :: 〈l′′〉
i(l,l′′,l′)
−−−−−−−−→ l :: {l′′/z}P ‖ l′ :: nil

The semantics of Cama operations is given using a straightforward extension of
the process algebra outlined above.

3.1 Process algebra semantics of CAMA

The basic parts of the Cama system are locations, scopes, agents and middle-
ware. Locations provide scopes which, in turn, provide a private coordination
space to communicating agents. Middleware is an active entity that controls
the state of a location and provides certain services, such as scope creation.
Agents can synchronise using Linda-style operations on scopes. Scopes can con-
tain sub-scopes thus providing a hierarchy of nested agent activities. The subset
of the Cama operations chosen for model-checking comprises a number of loca-
tion/scope operations:

EngageLocation DisengageLocation CreateScope GetScopes
DeleteScope JoinScope LeaveScope

and a number of synchronisation operations: in, rd, inp, rdp, out, ina, rda,
inpa and rdpa. All these operations require locality variable argument which
is a reference to a location. In Cama, locations are static and hence they never
appear or disappear during an agent’s lifetime (dynamic locations creation and
destruction can be simulated by other means). Operations occurring within a
locality l are denoted as, e.g., eval()@l. Synchronisation primitives take a scope
name instead of a location, and we assume that location names are contained
within the scope names. For brevity, the locality l may be omitted if its value is
clear from the context. To model nested scopes, we use the notion of a location
tuple prefix, corresponds to one or more fields of a tuple. The syntax of tuple
prefixes p is based on that of tuple/template:

t ::= ? p !z p t, t

where ‘?’ is a wildcard matching any field value, and ‘t1, t2’ is field concatenation.
We than define p = 〈t〉 as well as use ‘∗’ for prefix concatenation, pn for prefix
repetition, and p∗ for an open prefix. We also use the following operations:

– [p](n) is the value of the n-th field of a tuple with the prefix p where field
count starts after the prefix part. For example, [a](2) applied to a tuple space
containing a ∗ 〈a1, a2〉 can give a2 (note that matching is non-deterministic
if p is a prefix of more then one tuple).

– [p]′(n) is the same as [p](n) but it also removes the matched tuple.

– [p(n)] is the bag of values of the n-th fields of all p-matching tuples.

All these operations assume that there is at least one tuple matching p and
the length of any tuple that can be matched is at least equal to the length of
p plus n, otherwise operation’s behaviour is undefined. Note that it is possible
to express the above operations via standard Linda constructs; for example,
assigning [p](n) to a variable v is equivalent to rd(p ∗ 〈?〉n ∗ 〈!v〉). Finally, the
open prefix matches all the tuples starting with a given prefix, and so tuples of
different length and structure may be matched.

To model scopes and the location middleware behaviour, we need a structur-
ing of tuple space through special prefixes, as given in the table below:

Prefix name Description
m∗ Requests to the middleware
i∗ Possible agent names
a∗ Issued agent names
s∗ Scopes
s ∗ s∗ Description structures of scope s
s ∗ s ∗ r∗ Roles of a scope
s ∗ s ∗ n∗ Number of roles in a scope
s ∗ s ∗ r ∗ r ∗ 〈min,max〉 Restrictions on individual role r
s ∗ s ∗ d∗ Dynamic state of a scope instance
s ∗ s ∗ c ∗ Contents of scope s

We need two auxiliary operations, lock(p) and unlock(p), which grant and
release exclusive access to all the tuples beginning with a prefix p:

lock(p)
df

= in(X ∗ p ∗ 〈1〉) .out(X ∗ p ∗ 〈0〉)

unlock(p)
df

= in(X ∗ p ∗ 〈0〉) .out(X ∗ p ∗ 〈1〉)

Many operations are carried out by the location middleware, which is mod-
elled as a set of looped event handlers waiting for certain tuples with prefix
m to appear. A middleware process Pmid@l is defined as parallel composition
of the event handling processes: PEngageLocation, PDisenageLocation, PCreateScope,
PDeleteScope, PJoinScope, PLeaveScope, PScopeActivate and PScopeDeactivate. In each
case, there is an agent side code that sends a request and collects any re-
turned data, using some additional operations, such as AEngageLocation@l
and ADisengageLocation@l.

Engage location operation registers an agent in a given location and issues a
new name that is guaranteed to be location-wide unique; it allows the agent to
execute other operations in the location. This operation is always the first one

executed by an agent when it connects to a new location.

AEngageLocation@l
df

= lock(m) .out(m ∗ 〈engage〉) .

in(e ∗ 〈!a〉) .unlock(m)

PEngageLocation
df

= in(m ∗ 〈engage〉) . in(i ∗ 〈!a〉) .

out(a ∗ 〈a〉) .out(e ∗ 〈a〉) .

PEngageLocation(N)

Disengage location removes the registered agent name from the internal reg-
istry of the agent names.

ADisengageLocation@l
df

= out(m ∗ 〈disengage, a〉)

PDisenageLocation
df

= in(m ∗ 〈disengage, !a〉) .

in(a ∗ 〈a〉) . PDisenageLocation

Create scope adds a new scope defined by a name and a special record d that
describes the scope structure and the role that the creating agent will assume.
The record d has the following fields: rolesn - the number of roles, roles - the
vector of role names, min - the minimal required participants number, and max
- the maximum allowed participants number.

ACreateScope(a, s, d, r)@l
df

= out(m ∗ 〈create scope, a, s, d, r〉)

PCreateScope
df

= in(m ∗ 〈create scope, !a, !s, !d, !r〉) . lock(s) .

if(a ∈ [a(1)] ∧ s ∈ [s(1)] ∧ r ∈ d.roles)
then

out(s ∗ s ∗ n ∗ 〈d.rolesn〉) .outa(s ∗ s ∗ r ∗ 〈d.roles〉) .

outa(s ∗ s ∗ r ∗ 〈d.roles, d.min, d.max〉) .

outa(s ∗ s ∗ d ∗ 〈d.roles, 0〉)
endif . in(s ∗ s ∗ d ∗ 〈r, 0〉) .out(s ∗ s ∗ d ∗ 〈r, 1〉) .

out(s ∗ s ∗ c ∗ 〈a〉) .out(m ∗ 〈activator, s〉) .

out(e ∗ 〈join, s〉) .unlock(s) . PCreateScope

Activated

Closed Open

Pending Expanding

Fig. 1. Hierarchy of scope states.

A scope becomes activated after some agent creates it with the CreateScope
operation. Scope is open when there are some vacant roles in it. Scope is closed
when all the roles are taken. Scope is pending if some required roles are not
taken yet and expanding if all the required roles are taken but there still some
vacant roles (see figure 1).
Delete scope destroys a scope which must be owned by the calling agent. Any
contained scopes are also destroyed.

ADeleteScope(a, s)@l
df

= out(m ∗ 〈delete scope, a, s〉)

The middleware process simply removes all the tuples associated with the scope
and any of its sub-scopes.

PDeleteScope
df

= lock(m) . in(m ∗ 〈delete scope, !a, !s〉) . inpa(s ∗ s∗) .

inpa(d ∗ s∗) .unlock(m) . PDeleteScope

Join scope puts an agent into an existing scope if there is appropriate vacant
role in the scope.

AJoinScope(a, s, r)@l
df

= out(m ∗ 〈join scope, a, s, r〉)

This operation may trigger scope activation or change of the state from open to
closed. The middleware process adds new participant to the scope and announces
the event.

PJoinScope
df

= in(m ∗ 〈join scope, !a, !s, !r〉) .

lock(s) .

if (a ∈ [a(1)] ∧ s ∈ [s(1)] ∧ r ∈ [s ∗ s ∗ r(1)] ∧
[s ∗ s ∗ d ∗ r ∗ r](1) < [s ∗ s ∗ r ∗ r](2))

then

out(s ∗ s ∗ c ∗ 〈a〉) .

out(s ∗ s ∗ d ∗ r ∗ 〈r, [s ∗ s ∗ d ∗ r ∗ r]′(1) + 1〉) .

out(e ∗ 〈join, s〉)
endif .unlock(s) . PJoinScope

Leave scope removes the calling agent from a given scope and role.

ALeaveScope(a, s, r)@l
df

= out(m ∗ 〈leave scope, a, s, r〉)

The middleware process removes record about the agent and issues an event that
may trigger scope state update.

PLeaveScope
df

= in(m ∗ 〈leave scope, !a, !s, !r〉) . lock(s) .

if a ∈ [s ∗ s ∗ c(1)]
then

out(s ∗ s ∗ d ∗ r ∗ 〈r, [s ∗ s ∗ d ∗ r ∗ r]′(1) − 1〉)
in(s ∗ s ∗ c ∗ 〈a〉) .out(e ∗ 〈leave, s〉)

endif .unlock(s) . PLeaveScope

Linda operations that we are using also sugared with additional checks for
a scope’s state:

– in(t)@s
df

= rd(s∗s∗〈ready〉) . in(s∗s∗c∗t) removes and returns a tuple that
matches the supplied tuple template. First it checks if the specified scope
exists and that it is ready. If it not so the operation blocks until conditions
change. When there is no tuple available immediately it also blocks until
one appears. In case of multiple matching tuples the result is chosen non-
deterministically.

– out(t)@s
df

= rd(s∗s∗〈ready〉) .out(s∗s∗ c∗ t) outputs a tuple into a scope.
First it checks if the target scope is available and ready.

Other operations are defined in a similar manner. Each operation is prefixed
by rd(s ∗ s ∗ 〈ready〉) and a tuple or template argument is prefixed with the
prefix corresponding to the scope. Operations acting on vector of tuples can be
expressed via other operation using prefix locking function.

Whenever a join event occurs (meaning a joining of an agent to a scope),
the scope activate process checks if the state of the scope in question need to be
updated. There are two possible situations. The first one is when all the required
roles are fulfilled and the scope changes its state from pending to ready. As a
result, the process issues a tuple that triggers execution of possibly suspended
earlier Linda operations. Another situation is when all the possible roles are
taken and no more agents should be able to connect to this scope. In this case
the scope becomes closed and this prevents any other agents from entering it.

PScopeActivate
df

= in(e ∗ 〈Join, !s〉) .

if (s ∈ [s(1)] ∧
∀ρ ∈ [s ∗ s ∗ r(1)] : [s ∗ s ∗ d ∗ ρ](1) ≥ [s ∗ s ∗ r ∗ ρ](1))

then in(s ∗ s ∗ 〈!state〉) .out(s ∗ s ∗ 〈ready〉) .

if (s ∈ [s(1)] ∧
∀ρ ∈ [s ∗ s ∗ r(1)] : [s ∗ s ∗ d ∗ ρ](1) = [s ∗ s ∗ r ∗ ρ](2))

then in(s ∗ s ∗ 〈!state〉) .out(s ∗ s ∗ 〈closed〉) .

PScopeActivate

Moreover, PScopeDeactivate updates the state of a scope whenever some agent
leaves it.

4 Model checking CAMA systems

Mobile systems are highly concurrent causing a state space explosion when ap-
plying model checking techniques. We therefore use approach which copes well
with such a problem based on partial order semantics of concurrency and the
corresponding Petri net unfoldings.

A finite and complete unfolding prefix of a Petri net PN is a finite acyclic net
which implicitly represents all the reachable states of PN together with transi-
tions enabled at those states. Intuitively, it can be obtained through unfolding
PN , by successive firings of transition, under the following assumptions: (i) for
each new firing a fresh transition (called an event) is generated; (ii) for each
newly produced token a fresh place (called a condition) is generated. If PN has

finitely many reachable states then the unfolding eventually starts to repeat it-
self and can be truncated (by identifying a set of cut-off events) without loss of
information, yielding a finite and complete prefix.

Efficient algorithms exist for building such prefixes [8], and complete prefixes
are often exponentially smaller than the corresponding state graphs, especially
for highly concurrent Petri nets, because they represent concurrency directly
rather than by multidimensional ‘diamonds’ as it is done in state graphs. For
example, if the original Petri net consists of 100 transitions which can fire once
in parallel, then the state graph will be a 100-dimensional hypercube with 2100

vertices, whereas the complete prefix will be isomorphic to the net itself. Since
mobile systems usually exhibit a lot of concurrency, their unfolding prefixes are
often much more compact than the corresponding state graphs. Therefore, un-
folding prefixes are well-suited for alleviating the state space explosion problem.
To apply net unfoldings, we need to translate process algebra terms correspond-
ing to Cama systems into Petri nets.

4.1 From process algebra to Petri nets

The development of Petri net model corresponding to expressions of the process
algebra for Cama systems has been inspired by the box algebra [1] and by the
rp-net algebra used in [4] to model π-calculus. It uses coloured tokens and read-
arcs (allowing any number of transitions to simultaneously check for the presence
of a resource stored in a place). Transitions can have different labels, such as o

to specify outputting of data to tuple spaces, i to specify retrieving of data from
tuple spaces, and e to specify process creation.

A key idea behind the translation is to view a system as consisting of a main
program together with a number of procedure declarations. We then represent
the control structure of the main program and the procedures using disjoint
unmarked nets, one for the main program and one for each of the procedure
declarations. The program is executed once, while each procedure can be invoked
several times (even concurrently), each such invocation being uniquely identified
by structured tokens which correspond to the sequence of recursive calls along
the execution path leading to that invocation. With this in mind, we use the
notion of a trail σ to denote a finite (possibly empty) sequence of e-labelled
transitions. And the places of the nets which are responsible for control flow will
carry tokens which are simply trails. (The empty trail will be treated as the usual
‘black’ token.) Procedure invocation is then possible if each of the input places
of a transition t labelled with e contains the same trail token σ, and it results in
removing these tokens and inserting a new token σt in each initial (entry) place
of the net corresponding to the definition of A(. . .), together with other tokens
representing the corresponding actual parameters. Places are labelled in ways
reflecting their intended role, as explained below.

– Control flow places: These will be used to model control flow and be labelled
by their status symbols (internal places by i, and interface places by e and
x, for entry and exit, respectively).

– Locality places (or loc-places): These will be labelled by localities in L and
carry structured tokens representing localities known and used by the main
program and different procedure invocations. Each such token, called a
trailed locality, is of the form ω.l where σ is a trail and l is a locality in
L other than self. Intuitively, its first part, σ, identifies the invocation in
which the token is available, while the second part, l, provides its value.
Loc-places labelled by self indicate where processes are being executed.

– Tuple-place: This is a distinguished place, labelled by TS, used to represent
data stored at various tuple spaces. It will store a multiset of structured
tokens of the form l.l′, each such token corresponding to the expression
l :: 〈l′〉 in the process algebra.

e

i

xz

` TS

self

ω

ω

u.vω.u

ω.v ω.w

K(in(!z)@`)

e

o

x`′

` TS

self

ω

ω

u.vω.u

ω.v ω.w

K(out(`′)@`)

Fig. 2. Translations for two basic actions.

Two example translations for the basic actions are given in figure 2. The first
one, K(in(!z)@`), can match any tuple in the space identified by `. We do not
assume that `′, ` and self are distinct, and if that is the case, we collapse the
corresponding loc-places, and gather together the annotations of the read arcs.
When executed under a binding [, the translation generates the visible label
i([(w), [(v), [(u)). In the second translation, K(out(`′)@`), it may well happen
that ` = `′ in which case the two loc-places collapse into a single one, and we
have two annotations for the only read-arc linking it with the only transition, ω.u
and ω.v. When executed under a binding [each of the translations generates the
visible label o([(w), [(v), [(u)). The translation then proceeds in the following
four phases (see [5] for details):

Phase I Each process Pi is translated compositionally into K(Pi) and during
this process all non-control places with the same label are being merged.

Phase II For each process definition A(u1, . . . , ur)
df

= PA, we first translate
compositionally PA into K(PA) and during this process all non-control places
with the same label are being merged into a single one. After that we add loc-
place labelled ui for each i ≤ r, unless such a place is already present, and
suitably deal with the loc-places. The result is denoted K(A).

Phase III For each network node li :: Pi, we first translate compositionally Pi

into K(Pi) and during this translation all non-control places with the same label

are being merged. After that, we add loc-place labelled selfi identifying it with
the only self-labelled place (if present) and give the result label selfi.
Phase IV We take the parallel composition of the K(A)’s and K(li :: Pi)’s,
identifying all non-control places with the same label, and then suitably connect
the nets to mimic process instantiation. After that we set the initial marking;
in particular, and for each l′j :: 〈l′′j 〉, we insert a single l′j .l

′′

j -token into the TS-
labelled place.

It can be shown that the labelled transition system of the original process
algebraic expression is strongly bisimilar to that of the resulting net, and so the
latter can be used for model checking instead of the former.

5 Conclusion

In this paper, we outlined an approach to context aware location-based mobile
systems based on Cama and sketched how to provide it with a formal concur-
rency semantics in terms of a suitable process algebra. The resulting description
can be analysed using efficient model checking techniques in a way which alle-
viates the state space explosion. The model checking technique adopted in our
work is partial order model checking based on Petri net unfoldings, and we briefly
described a semantics preserving translation from the process terms used in the
modelling of Cama to a suitable class of high-level Petri nets.

This research was supported by the EC IST grant 511599 (Rodin).

References

1. E.Best, R.Devillers and M.Koutny: Petri Net Algebra. EATCS Monographs on
TCS, Springer (2001)

2. L. Bettini et al.: The KLAIM Project: Theory and Practice. Proc. of Global Com-
puting, Springer, LNCS 2874 (2003) 88–150

3. C.Bryce, C.Razafimahefa and M.Pawlak: Lana: An Approach to Programming Au-

tonomous Systems. Proc. of ECOOP’02 (2002) 281–308
4. R.Devillers, H.Klaudel and M.Koutny: Petri Net Semantics of the Finite π-

Calculus. Proc. of FORTE 2004, Springer, LNCS 3235 (2004) 309–325
5. R.Devillers, H.Klaudel and M.Koutny: A Petri Net Semantics of a Simple Process

Algebra for Mobility. Technical Report, CS-TR-912, School of Computing Science,
University of Newcastle upon Tyne (2005)

6. D.Gelernter: Generative Communication in Linda. ACM Computing Surveys 7
(1985) 80–112

7. A.Iliasov, L.Laibinis, A.Romanovsky and E.Troubitsyna: Towards Formal Devel-

opment of Mobile Location-Based Systems. To appear in REFT (2005)
8. V.Khomenko: Model Checking Based on Prefixes of Petri Net Unfoldings. PhD

Thesis, School of Computing Science, University of Newcastle upon Tyne (2003)
9. R.Milner, J.Parrow and D.Walker: A Calculus of Mobile Processes. Information

and Computation 100 (1992) 1–77
10. G.P.Picco, A.L.Murphy, G.-C.Roman: Lime: Linda Meets Mobility. Proc. of

ICSE’99 (1999)
11. The Mobile Agent List. http://reinsburgstrasse.dyndns.org//mal/preview

