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1. Introduction  

1.1 Motivation 

Mobile agents have many attractive features to offer and they are often mentioned as 
a future mainstream industry-level software technology. The agent technology 
naturally solves the problem of decoupling complex software into smaller parts that 
are easier to design, code and maintain. It helps to use distributed computing power 
effectively while hiding many of the details and complexities of a hosting 
environment. Recent advances in mobile computing and wireless networks lead to 
introduction of host (physical) mobility that offers totally new opportunities and as 
well raises new problems. Though substantial research has been conducted on 
developing middleware solutions supporting mobile agents, the mobile agent 
technology is still not mature enough to become a practice in industrial software 
development. There are several areas in which no general solutions have been found 
yet. One of them is ensuring interoperability of independently designed agents and 
correctness of the overall mobile system. In this work we will present a background 
for building a formal development methodology that addresses this problem.  

Agent software is designed to interact with other agents during its lifetime. Most 
research in the area discusses only centralized development process, when all the 
participating pieces of software (code of the agents) are created at the same site to 
solve common problems. In this case agents are mostly useful as a replacement of 
conventional client-server scheme with migrating clients or/and servers. However the 
application area of the mobile agents is much broader and, to make full use of their 
communication and migration capabilities, we need to assume systems are composed 
dynamically out of agents developed independently at different sites and for different 
purposes. Such configurations are impossible if agents are merely anonymous black 
boxes. In our view, to cooperate, agents must be based upon some common 
specification of their functionality. This specification should be formally developed 
and verified to ensure the desired properties of the application composed of agents. 
Developers of individual agents can independently extend the specification (using a 
refinement method) to add unique features without losing compatibility with other 
agents derived from the same specification.  



The specification should be minimal in a sense that it does not have to provide many 
design details but it should be complete enough to identify what services the agent has 
to offer and what services it is looking for. This information should describe how to 
communicate with the particular class of agents, what such agents expect as input, and 
what output they produce. 

1.2 Background 

Mobile agent systems are often symmetric in a sense that each system participant 
roughly carries the same middleware implementation. Agents can dynamically and 
autonomously form new groups and communicate.  However in this paper we explore 
an asymmetric approach in which different parts of the system carry different basic 
functionality. One particular example of such view is a location-based scheme. In this 
model locations provide services to the agents, such as connectivity and coordination 
space. Agents are not able to communicate with each other without a location support. 
The choice of the scheme is supported by the fact that the majority of the mobile 
applications assume that agents meet in physical or logical locations providing a set of 
designated services to them. Hence, the asymmetric scheme is closer to the traditional 
service provision architectures. It can support large-scale mobile agent networks in a 
very predictable and reliable manner. It makes better use of the available resources 
since most of the operations are executed locally. Moreover, location-based 
architecture eliminates the need for employing complex distributed algorithms or any 
kind of remote access. This allows us to guarantee atomicity of certain operations 
without sacrificing performance and usability. This scheme also provides a natural 
way of introducing context-aware computing by defining location as a context. The 
main disadvantage of the location-based scheme is that an additional infrastructure is 
always required to support mobile agent collaboration. 

The coordination paradigm (originated in Linda [4]) has become the dominating 
environment in which a number of mobile systems are built (including Lime [7], 
Klaim [2], etc.). Linda is a set of language-independent coordination primitives that 
can be used for communication and coordination between several independent pieces 
of software. First used for parallel programming, it later became a core component of 
many mobile software systems because it fits nicely the main characteristics of the 
mobile systems: openness, dynamicity, anonymity of agents and their loose 
coordination. Linda-based coordination systems specifically designed for mobile 
applications supporting both physical mobility, such as a device with running 
application travelling along with its user across network boundaries, and logical 
mobility, when a software application changes its hosting environment. 

The rest of the paper is organized as follows. Section 2 introduces a number of basic 
abstractions to be used in development of mobile systems. Sections 3 describes a 
rigorous development process supporting these abstractions. Section 4 presents a 
formal abstract specification of the middleware. Finally, the last section presents 
conclusions and outlines our future work. 



2. System structure  

The CAMA (context-aware mobile agents) system consists of a set of locations. 
Active entities of the system are agents. An agent is a piece of software that meets a 
number of requirements. Each agent is executed on its own platform. The platform 
provides execution environment interface to the location middleware. Agents 
communicate only with other agents in the same location. Agents can migrate from 
location to location logically (connections and disconnection) or physically (e.g. 
movement of a PDA on which the agent is hosted on). They can also logically migrate 
from platform to platform using weak code mobility. Compatible agents collaborate 
through a scoping mechanism. A scope defines a joint activity of several agents. The 
scoping mechanism also isolates non-compatible agents from each other. Below are 
the details of the introduced concepts. 

A location is a container for scopes. It can be associated with a particular physical 
location and can have certain restrictions on the types of supported scopes. It is the 
core part of the system as it is provides means of communications and coordination 
between agents. Location is a named entity and for simplicity we assume that each 
location has a unique name in the given context. This roughly corresponds to IP 
addresses of hosts on network which are often unique in some local sense. Location 
must keep track of present agents and their properties in order to be able to 
automatically create new scopes and restrict access to existing ones. The more 
detailed location description is presented in the form of a formal specification (see 
Section 4).   

Certain locations may prevent agents from entering without an authorization. To be 
allowed to enter a location, an agent must have a key issued by it. Keys may be 
permanent or have a validity period determined by the issuing location Agent must 
have to acquire a key on a different location before entering a protected location. 

Locations may provide special services, like access to a service from a variety of 
devices connected to the location, making enquires and so on. Each Location may 
have its own unique set of services and provided operations. They are made available 
to agents via what appears to agents as a normal scope though some roles in these 
scopes are implemented by the location system software. As with all scopes, agents 
are required to implement specific interfaces in order to connect to a location-
provided scope. An example of such services includes printing on a local printer, 
access to Internet, making a backup to a location storage, migration and etc. In 
addition to supporting scopes as mean of agent communication, location may also 
support logical mobility of agents, hosting of platforms and agent backup. Hosting of 
platform on a location allows agent to execute without a PDA. For example, a user 
may decide to move an agent from his PDA to a location before leaving the location 
with his PDA. In addition to the above, location, by a request from an agent, may play 
in certain types of scopes a role of a trusted third party that is neutral to all the 
participating agents. This facilitates implementation of various transaction schemes. 

A platform provides an execution environment for an agent. It is composed of a 
virtual machine for code execution, networking support and middleware for 



interaction with location. A platform may be supported by PDA, smart-phone, laptop 
or a location server. The concept of platform is important to clearly differentiate 
between a location providing coordination services to agents and middleware that 
only supports agent execution. In other approaches no such distinction is made. 

An agent is a piece of software implementing a set of roles which allow it to take 
part in certain scopes. All agents must implement the minimal functionality called the 
default role, which specifies activities outside scopes.  

A scope is a dynamic container for tuples. It provides an isolated coordination space 
for compatible agents by restricting visibility of the tuples contained in the scope to 
the participants of the scope. Scopes are initiated by an agent and then atomically 
created by Location when all the participants are ready. Scopes can be nested and 
scope participants can create new contained scopes. Scope is defined by the set of 
roles and a set of logical restrictions. 
 

          
 

Fig. 1.  Scope classification a) according to the availability of scopes for new agents and b) 
according to the agent activity in a scope. 

A scope becomes activated after some agent creates it with the CreateScope 
operation. A scope is open when there are some vacant roles in it, and is closed when 
all the roles in it are taken. A scope is pending if some required roles are not taken yet 
and expanding if all the required roles are taken but there still some vacant roles. 
Closed and expanding states correspond to working scopes, where agents can 
communicate. All participants of a pending scope are blocked until the scope state is 
changed into closed or expanding. 

A role is an abstract description of agent functionality. Each role is associated with 
some scope type. An agent may implement a number of roles and can also play 
several roles in the same scope or different scopes. There is formal relationship 
between a scope and a role of a scope. 

Introduction of scopes and roles offers agents an entirely new way to discover each 
other and to collaborate with each other. After arrival to a new location, an agent 
looking for partners, initiates scope creation or join protocol. They are implemented 
as a request to the controlling system (middleware) to find appropriate partners ready 
for certain type of activity. In a request agent specifies type of scope it wants to work 
in and a role it is going to take. The system then creates a scope or finds an existing 
matching scope with available role for the agent. This procedure is executed 
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atomically. As soon as all the required roles are taken, the system creates a separate 
coordination space for the group of agents participating in the scope. Isolation 
achieved this way greatly simplifies agent design since while in a scope agent may 
safely assume reasonable behaviour of their partners. In a scope agents remain 
anonymous as long as they need and procedures of scope joining or creation do not 
change this. 

The CAMA approach supports the context-awareness of mobile agents. The context 
of an agent in CAMA systems consists of is composed of the following parts: a set of 
locations the agent is connected to, the state of scopes in which the agent is currently 
participating (including tuples contained in these scopes) and role attributes of other 
agents in collaborating with the agent. 

3. Formal Development Process 

Formal development process of the CAMA system consists of several steps. First, we 
create abstract specifications of the middleware (location) and the scopes that will be 
supported by the system. Then we develop (by the stepwise refinement method) 
specifications of different roles participating in scopes. Finally, we compose an agent 
specification as a combination of several developed roles (i.e., agent interfaces) and 
the default functionality defining the agent behaviour outside scopes. 

The agent specification can be further refined adding more details and custom 
functionality. Compatibility of different agents is ensured by the fact that all agents 
have been developed by the formal refinement method from the same abstract 
specifications of different roles and the middleware. Therefore, agents can collaborate 
making safe assumptions about the functionality of their peers.  

In the next subsection we give a brief introduction into our formal framework – the 
B Method, which we will use to formalise the development process described above. 

3.1 The B Method 

The B Method [1] (further referred to as B) is an approach for the industrial 
development of highly dependable software. The method has been successfully used 
in the development of several complex real-life applications [6]. The tool support 
available for B provides us with the assistance for the entire development process. For 
instance, Atelier B [8], one of the tools supporting the B Method, has facilities for 
automatic verification and code generation as well as documentation, project 
management and prototyping.  The high degree of automation in verifying correctness 
improves scalability of B, speeds up development and, also, requires less 
mathematical training from the users.  

The development methodology adopted by B is based on stepwise refinement [3]. 
While developing a system by refinement, we start from an abstract formal 
specification and transform it into an implementable program by a number of 
correctness preserving steps, called refinements. A formal specification is a 



mathematical model of the required behaviour of a (part of) system. In B a 
specification is represented by a set of modules, called Abstract Machines. An 
abstract machine encapsulates state and operations of the specification and as a 
concept is similar to a module or a package. 

Each machine is uniquely identified by its name. The state variables of the machine 
are declared in the VARIABLES clause and initialized in the INITIALISATION 
clause. The variables in B are strongly typed by constraining predicates of the 
INVARIANT clause. All types in B are represented by non-empty sets. We can also 
define local types as deferred sets. In this case we just introduce a new name for a 
type, postponing actual definition until some later development stage. 

The operations of the machine are defined in the OPERATIONS clause. In this 
paper we use Event B extension of the B Method. The operations in Event B are 
described as guarded statements of the form SELECT cond THEN body END. 
Here cond is a state predicate, and body is a B statement. If cond is satisfied, the 
behaviour of the guarded operations corresponds to the execution of their bodies. 
However, if cond is false, then the execution of the corresponding operation is 
suspended, i.e., the operation is in waiting mode until cond becomes true.  

The generalised version of the guarded operation is ANY operation. The syntax of  
ANY operation is  ANY  vars WHERE cond THEN body END.  The operation 
corresponds to a family of events or a parameterised event operation. It is triggered by 
any acceptable values of the variables vars satisfying the condition cond. The 
variables vars are then used as local variables in the operation body.   

B statements that we are using to describe a state change in operations have the 
following syntax: 

 
S   ==  x := e  |  IF  cond  THEN  S1  ELSE  S2  END | S1 ; S2  |   x :: T   | 

S1 || S2 | ANY  z  WHERE  cond  THEN  S  END   |   ... 
 
The first three constructs – assignment, conditional statement and sequential 

composition (used only in refinements) have the standard meaning. The remaining 
constructs allow us to model nondeterministic or parallel behaviour in a specification. 
Usually they are not implementable so they have to be refined (replaced) with 
executable constructs at some point of program development. The detailed description 
of the B statements can be found elsewhere [1]. 

3.2 Development of Scopes and Roles 

The specification of a scope describes general functionality of several collaborating 
agents (in particular roles). The task of formal development is to use the specification 
as the starting point for the derivation of specifications of the corresponding agent 
roles (interfaces). To guarantee correctness of the resulting role specifications, we use 
formal refinement and decomposition techniques. For example, Fig.2 shows that the 
Lecture scope is decomposed into roles Student and Teacher defining functionality 
of the corresponding agents. 



On the other hand, we have to take into account scope nesting, when scopes have 
embedded subscopes providing some extended functionality. Subscope specifications 
can be naturally derived from the original scope specification via refinement. After 
verifying the correctness of refinement, we can continue the development process by 
decomposing the specification into corresponding roles as described above. In Fig.2, 
we show how scope Lecture is refined by subscope Group work, which is 
consequently decomposed into roles Student' and Teacher'. 
 

       
 

Fig. 2. a) Orthogonal decomposition diagram b) its representation as a parallel refinement. SD 
is scope decomposition; D – decomposition of a  scope into roles; R – refinement. 

As a result, we have two orthogonal development processes with the same starting 
point – the original specification of a scope. Both developments arrive at role 
specifications describing agent functionality in the corresponding scopes. However, 
the hierarchy of scopes and subscopes should be reflected in the corresponding 
specifications of agent roles. Hence the roles in subscopes must be the extensions of 
the corresponding roles in the scopes. In other words, to guarantee the consistency of 
developed roles, we have to show that the subscope roles refine the corresponding 
scope roles. 

In our Lecture scenario, we derived the specifications of agents in roles Student 
and Teacher. These specifications describe the functionality of the corresponding 
agents after joining scope Lecture. On the other hand, roles Student’ and Teacher’ 
describe the behaviour of the corresponding agents while they enter scope Group 
Work which is a subscope of Lecture. These roles have to satisfy the requirements 
specified in Student and Teacher. At the same time, they can provide additional 
functionality specific to Group Work. By proving formally that Student’ is a 
refinement of Student, and Teacher’ is a refinement of Teacher, we guarantee 
consistency of agent behaviour in nested scopes Lecture and Group work. In Fig.2, 
this is shown by the arrows connecting roles Student' and Student, and roles 
Teacher' and Teacher.  
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3.3 Agent Design 

Agent design starts with the selection of roles that the agent must implement. It is 
permitted to implement any number of roles from different scopes. Initially roles 
inside of an agent are totally independent specifications that may well correspond to 
several independent processes running in an agent. Agent refinement specifies 
additional operations that control agent behaviour during migration, location 
selection, scope creation and joining, and other activities not covered by roles.  

During agent refinement process, the agent roles can also be refined, possibly by 
adding some new functionality. Due to the nature of refinement, the refined roles are 
still compatible with the original abstract roles.  
 

 
 Fig.3. Relations between agents, scope models and roles. D – decomposition of a scope into 
roles; E – extension of role specification an agent model; R – refinement of an agent model. 
 
We start building an agent specification by extending one or more roles obtained 

formally through the decomposition of abstract scope models (see Fig. 3). The 
refinement step introduces a specification of the minimal agent functionality called 
the default role. It allows an agent to talk to locations, create/join/leave scopes, and 
migrate. The agent may also need some logic that glues independent interfaces and 
allows them to talk to each other. This is done via the global agent variables and the 
special methods for accessing to them.  

After the agent specification is ready, it is used to build the source code for the 
actual agent program. The source is linked against the middleware library to get an 
executable agent program. The generated agent source may run on PDAs, laptops, 
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desktop PCs and smart-phones using the platform-specific middleware 
implementation as the adaptation layer. 

The standard work cycle of an agent looks like this: an agent detects the available 
locations and connects to at least one of them, then looks for current activities on the 
location(s) or creates its own new scope, and finally joins a scope and plays one of the 
implemented roles in it. Only when the agent decides to play a particular role in a 
scope, it really starts to cooperate with other agents. The agent is capable of 
understanding its peers since the role functionalities of all the scope participants are 
based on the same abstract model. As a result, the composition of agent functionalities 
in a scope corresponds to the initial abstract model.  
 

 
Fig. 4. An instantiation of an abstract model  

The correctness of a model instantiation, or in other words, the fact that the scope 
instantiates the corresponding abstract scope model, can be demonstrated by 
analysing the agent design process and assuming that there is a correct transition from 
agent model to agent implementation. In Fig.4 we illustrate an instantiation of an 
abstract model which is formed when all the roles in the scope are taken by some 
agents. 

3.4 Fault Tolerance 

Ability to operate in a volatile, error prone environment will be an intrinsic feature of 
CAMA. Hence CAMA systems should be able to withstand various kinds of faults, 
i.e., guarantee fault tolerance. The most typical fault is a temporal connectivity loss 
which can cause failures of communication between cooperating agents or between an 
agent and the location. 

Since in the CAMA approach the agent and location software are developed from 
the corresponding B specifications, the fault tolerance mechanisms should be already 
integrated into these specifications, so that development of fault tolerance means is 
becoming part of the system development. For example, while modelling 
collaboration between agents in the specification of a scope, we have to define the 
agent behaviour in the presence of message losses, hardware failures etc. Moreover, 
while developing agent roles (interfaces) from the corresponding scope specifications, 
fault tolerance mechanisms should be distributed between involved parties. 
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Representing fault tolerance in CAMA constitutes an important research topic which 
we will further investigate in our future work. 

4 B Specification of the Middleware 

To ensure correct behaviour of the location-based system, the middleware of the 
location should enforce a certain discipline on agents. For instance, the properties of 
the scopes defined upon scope creation are preserved in spite of volatile connectivity 
and dynamic nature of scopes. Moreover, it should guarantee the integrity of the 
information about agents in locations and scopes. These complex interdependencies 
should be stated explicitly and verified. We have developed a formal specification of 
the location middleware which is the core of the system. It corresponds to the most 
complex part of the system and not only defines the operations that the location 
provides to support communication between agents but also state the properties of the 
data structures in the location. The actual middleware implementation will be based 
upon this formal model. An abstract description of the location specification is 
presented below. The full B specification can be found in [9].  
 
MACHINE  
   Location 
VARIABLES 
   AgentNames,          /* Agents active in the location */ 
   Scopes,                  /* Created scopes */ 
   ScopeRolesTaken,   /* A number of agents taken a particular role in a particular scope */ 
   AgentRoleData,       /* Public data disclosed by the agent while taking a certain role */   
   AgentScopes,          /* For each active agent defines the scopes in which it is active */ 
   ScopeAttributes,      /* Scope descriptions provided by scope creators */ 
   ScopeAgentRoles     /* The roles taken by agents in active scopes */ 
INVARIANT 
   Types of variables & interdependencies between data 
    
INITIALIZATION 
  Initially there are no agents and correspondingly no scopes in the location 
 … 
OPERATIONS 
 
/* Engagement request */ 
a_id < --Engage =   
  ANY Role_and_Data WHERE  
     Role_and_Data is the information about the supported roles supplied by the agent 
  THEN  
    CHOICE  
       successful engagement to the location by issuing valid ID to the agent via a_id and  
       update of AgentNames and AgentRoles  
    OR  
       failed engagement to the location by issuing invalid ID to the agent 
    END; 
  END; 
 
/* Disengagement request */ 



rr <-- Disengage = … 
 
/* Scope creation request from an agent */ 
scope_id <-- CreateScope = 
   ANY a_id, scopeDescr, role WHERE 
       a_id is ID of the agent requesting to create a scope 
       scopeDescr defines the necessary conditions for joining a scope 
       role: the role that the requesting agent a_id will play in the created scope 
   THEN 
      CHOICE 
          successful scope creation by issuing valid scope ID via scope_id,  
          updating list of active scopes Scopes and list of  
            scope descriptions ScopeAttributes updating AgentScopes,  
          ScopeRolesTaken and ScopeAgentRoles 
      OR 
         unsuccessful scope creation by issuing invalid scope ID via scope_id     
      END   
  END;  
 
/* Scope remove request */ 
result <-- DeleteScope = … 
 
/* Scope join request */ 
result <-- JoinScope = 
  ANY a_id, scope_id, role WHERE 
      a_id is ID of the agent requesting to join the scope 
      scope_id is ID of the scope which the agent is attempting to join 
      role is the role which a_id will play in the scope 
  THEN 
     IF 
        the agent a_id is not already participating in scope_id & 
        requested role is a valid role for the scope &  
        conditions for participating in the scope are not violated     
     THEN 
        the agent a_id is successfully joined the scope 
        the information about the agent is updated 
          in AgentScopes, AgentRoles, and ScopeAgentRoles 
        the information about the number of agents playing the role is updated for the scope  
     ELSE 
        the agent a_id is rejected to join the scope 
     END 
  END; 
 
/* Scope leave request */ 
result <-- LeaveScope = … 
 
/* Prompt information about the scopes in which an agent can participate */ 
scopes <-- GetScopes = … 
END 



5 Conclusions 

The presented work is tightly linked to the Ambient Campus case study of the 
RODIN Project. One of the project goals is to develop the methodology (based on 
formal methods) that would allow us to fully model and build the mobile location-
based systems. The requirements document (written for the Ambient Campus case 
study) is the first step towards creating the formal model of such systems.  

At the same time, we are developing middleware that will support our mobile agent 
abstractions. This paper presents the formal B specification of the location, i.e., the 
core part of the middleware. The choice of the location-based architecture (discussed 
in [5]) has influenced all the parts of our work on the case study, including the 
methodology.  

It is our plan to investigate more closely the agent design process. We are also 
planning to conduct several extensive experiments covering the full cycle of system 
development – starting from an abstract system model through all steps until we get 
running software.  
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