
Towards Formal Development of Mobile Location-Based
Systems

Alexei Iliasov1, Linas Laibinis2, Alexander Romanovsky1,
Elena Troubitsyna2

1Newcastle University, UK. {Alexei.Iliasov, Alexander.Romanovsky}@ncl.ac.uk
2Åbo Akademi, Finland. {Linas.Laibinis, Elena.Troubitsyna}@abo.fi

1. Introduction

1.1 Motivation

Mobile agents have many attractive features to offer and they are often mentioned as
a future mainstream industry-level software technology. The agent technology
naturally solves the problem of decoupling complex software into smaller parts that
are easier to design, code and maintain. It helps to use distributed computing power
effectively while hiding many of the details and complexities of a hosting
environment. Recent advances in mobile computing and wireless networks lead to
introduction of host (physical) mobility that offers totally new opportunities and as
well raises new problems. Though substantial research has been conducted on
developing middleware solutions supporting mobile agents, the mobile agent
technology is still not mature enough to become a practice in industrial software
development. There are several areas in which no general solutions have been found
yet. One of them is ensuring interoperability of independently designed agents and
correctness of the overall mobile system. In this work we will present a background
for building a formal development methodology that addresses this problem.

Agent software is designed to interact with other agents during its lifetime. Most
research in the area discusses only centralized development process, when all the
participating pieces of software (code of the agents) are created at the same site to
solve common problems. In this case agents are mostly useful as a replacement of
conventional client-server scheme with migrating clients or/and servers. However the
application area of the mobile agents is much broader and, to make full use of their
communication and migration capabilities, we need to assume systems are composed
dynamically out of agents developed independently at different sites and for different
purposes. Such configurations are impossible if agents are merely anonymous black
boxes. In our view, to cooperate, agents must be based upon some common
specification of their functionality. This specification should be formally developed
and verified to ensure the desired properties of the application composed of agents.
Developers of individual agents can independently extend the specification (using a
refinement method) to add unique features without losing compatibility with other
agents derived from the same specification.

The specification should be minimal in a sense that it does not have to provide many
design details but it should be complete enough to identify what services the agent has
to offer and what services it is looking for. This information should describe how to
communicate with the particular class of agents, what such agents expect as input, and
what output they produce.

1.2 Background

Mobile agent systems are often symmetric in a sense that each system participant
roughly carries the same middleware implementation. Agents can dynamically and
autonomously form new groups and communicate. However in this paper we explore
an asymmetric approach in which different parts of the system carry different basic
functionality. One particular example of such view is a location-based scheme. In this
model locations provide services to the agents, such as connectivity and coordination
space. Agents are not able to communicate with each other without a location support.
The choice of the scheme is supported by the fact that the majority of the mobile
applications assume that agents meet in physical or logical locations providing a set of
designated services to them. Hence, the asymmetric scheme is closer to the traditional
service provision architectures. It can support large-scale mobile agent networks in a
very predictable and reliable manner. It makes better use of the available resources
since most of the operations are executed locally. Moreover, location-based
architecture eliminates the need for employing complex distributed algorithms or any
kind of remote access. This allows us to guarantee atomicity of certain operations
without sacrificing performance and usability. This scheme also provides a natural
way of introducing context-aware computing by defining location as a context. The
main disadvantage of the location-based scheme is that an additional infrastructure is
always required to support mobile agent collaboration.

The coordination paradigm (originated in Linda [4]) has become the dominating
environment in which a number of mobile systems are built (including Lime [7],
Klaim [2], etc.). Linda is a set of language-independent coordination primitives that
can be used for communication and coordination between several independent pieces
of software. First used for parallel programming, it later became a core component of
many mobile software systems because it fits nicely the main characteristics of the
mobile systems: openness, dynamicity, anonymity of agents and their loose
coordination. Linda-based coordination systems specifically designed for mobile
applications supporting both physical mobility, such as a device with running
application travelling along with its user across network boundaries, and logical
mobility, when a software application changes its hosting environment.

The rest of the paper is organized as follows. Section 2 introduces a number of basic
abstractions to be used in development of mobile systems. Sections 3 describes a
rigorous development process supporting these abstractions. Section 4 presents a
formal abstract specification of the middleware. Finally, the last section presents
conclusions and outlines our future work.

2. System structure

The CAMA (context-aware mobile agents) system consists of a set of locations.
Active entities of the system are agents. An agent is a piece of software that meets a
number of requirements. Each agent is executed on its own platform. The platform
provides execution environment interface to the location middleware. Agents
communicate only with other agents in the same location. Agents can migrate from
location to location logically (connections and disconnection) or physically (e.g.
movement of a PDA on which the agent is hosted on). They can also logically migrate
from platform to platform using weak code mobility. Compatible agents collaborate
through a scoping mechanism. A scope defines a joint activity of several agents. The
scoping mechanism also isolates non-compatible agents from each other. Below are
the details of the introduced concepts.

A location is a container for scopes. It can be associated with a particular physical
location and can have certain restrictions on the types of supported scopes. It is the
core part of the system as it is provides means of communications and coordination
between agents. Location is a named entity and for simplicity we assume that each
location has a unique name in the given context. This roughly corresponds to IP
addresses of hosts on network which are often unique in some local sense. Location
must keep track of present agents and their properties in order to be able to
automatically create new scopes and restrict access to existing ones. The more
detailed location description is presented in the form of a formal specification (see
Section 4).

Certain locations may prevent agents from entering without an authorization. To be
allowed to enter a location, an agent must have a key issued by it. Keys may be
permanent or have a validity period determined by the issuing location Agent must
have to acquire a key on a different location before entering a protected location.

Locations may provide special services, like access to a service from a variety of
devices connected to the location, making enquires and so on. Each Location may
have its own unique set of services and provided operations. They are made available
to agents via what appears to agents as a normal scope though some roles in these
scopes are implemented by the location system software. As with all scopes, agents
are required to implement specific interfaces in order to connect to a location-
provided scope. An example of such services includes printing on a local printer,
access to Internet, making a backup to a location storage, migration and etc. In
addition to supporting scopes as mean of agent communication, location may also
support logical mobility of agents, hosting of platforms and agent backup. Hosting of
platform on a location allows agent to execute without a PDA. For example, a user
may decide to move an agent from his PDA to a location before leaving the location
with his PDA. In addition to the above, location, by a request from an agent, may play
in certain types of scopes a role of a trusted third party that is neutral to all the
participating agents. This facilitates implementation of various transaction schemes.

A platform provides an execution environment for an agent. It is composed of a
virtual machine for code execution, networking support and middleware for

interaction with location. A platform may be supported by PDA, smart-phone, laptop
or a location server. The concept of platform is important to clearly differentiate
between a location providing coordination services to agents and middleware that
only supports agent execution. In other approaches no such distinction is made.

An agent is a piece of software implementing a set of roles which allow it to take
part in certain scopes. All agents must implement the minimal functionality called the
default role, which specifies activities outside scopes.

A scope is a dynamic container for tuples. It provides an isolated coordination space
for compatible agents by restricting visibility of the tuples contained in the scope to
the participants of the scope. Scopes are initiated by an agent and then atomically
created by Location when all the participants are ready. Scopes can be nested and
scope participants can create new contained scopes. Scope is defined by the set of
roles and a set of logical restrictions.

Fig. 1. Scope classification a) according to the availability of scopes for new agents and b)
according to the agent activity in a scope.

A scope becomes activated after some agent creates it with the CreateScope
operation. A scope is open when there are some vacant roles in it, and is closed when
all the roles in it are taken. A scope is pending if some required roles are not taken yet
and expanding if all the required roles are taken but there still some vacant roles.
Closed and expanding states correspond to working scopes, where agents can
communicate. All participants of a pending scope are blocked until the scope state is
changed into closed or expanding.

A role is an abstract description of agent functionality. Each role is associated with
some scope type. An agent may implement a number of roles and can also play
several roles in the same scope or different scopes. There is formal relationship
between a scope and a role of a scope.

Introduction of scopes and roles offers agents an entirely new way to discover each
other and to collaborate with each other. After arrival to a new location, an agent
looking for partners, initiates scope creation or join protocol. They are implemented
as a request to the controlling system (middleware) to find appropriate partners ready
for certain type of activity. In a request agent specifies type of scope it wants to work
in and a role it is going to take. The system then creates a scope or finds an existing
matching scope with available role for the agent. This procedure is executed

Activated scopes

Working Waiting

Pending Expanding Closed

Activated scopes

Closed Open

Pending Expanding

atomically. As soon as all the required roles are taken, the system creates a separate
coordination space for the group of agents participating in the scope. Isolation
achieved this way greatly simplifies agent design since while in a scope agent may
safely assume reasonable behaviour of their partners. In a scope agents remain
anonymous as long as they need and procedures of scope joining or creation do not
change this.

The CAMA approach supports the context-awareness of mobile agents. The context
of an agent in CAMA systems consists of is composed of the following parts: a set of
locations the agent is connected to, the state of scopes in which the agent is currently
participating (including tuples contained in these scopes) and role attributes of other
agents in collaborating with the agent.

3. Formal Development Process

Formal development process of the CAMA system consists of several steps. First, we
create abstract specifications of the middleware (location) and the scopes that will be
supported by the system. Then we develop (by the stepwise refinement method)
specifications of different roles participating in scopes. Finally, we compose an agent
specification as a combination of several developed roles (i.e., agent interfaces) and
the default functionality defining the agent behaviour outside scopes.

The agent specification can be further refined adding more details and custom
functionality. Compatibility of different agents is ensured by the fact that all agents
have been developed by the formal refinement method from the same abstract
specifications of different roles and the middleware. Therefore, agents can collaborate
making safe assumptions about the functionality of their peers.

In the next subsection we give a brief introduction into our formal framework – the
B Method, which we will use to formalise the development process described above.

3.1 The B Method

The B Method [1] (further referred to as B) is an approach for the industrial
development of highly dependable software. The method has been successfully used
in the development of several complex real-life applications [6]. The tool support
available for B provides us with the assistance for the entire development process. For
instance, Atelier B [8], one of the tools supporting the B Method, has facilities for
automatic verification and code generation as well as documentation, project
management and prototyping. The high degree of automation in verifying correctness
improves scalability of B, speeds up development and, also, requires less
mathematical training from the users.

The development methodology adopted by B is based on stepwise refinement [3].
While developing a system by refinement, we start from an abstract formal
specification and transform it into an implementable program by a number of
correctness preserving steps, called refinements. A formal specification is a

mathematical model of the required behaviour of a (part of) system. In B a
specification is represented by a set of modules, called Abstract Machines. An
abstract machine encapsulates state and operations of the specification and as a
concept is similar to a module or a package.

Each machine is uniquely identified by its name. The state variables of the machine
are declared in the VARIABLES clause and initialized in the INITIALISATION
clause. The variables in B are strongly typed by constraining predicates of the
INVARIANT clause. All types in B are represented by non-empty sets. We can also
define local types as deferred sets. In this case we just introduce a new name for a
type, postponing actual definition until some later development stage.

The operations of the machine are defined in the OPERATIONS clause. In this
paper we use Event B extension of the B Method. The operations in Event B are
described as guarded statements of the form SELECT cond THEN body END.
Here cond is a state predicate, and body is a B statement. If cond is satisfied, the
behaviour of the guarded operations corresponds to the execution of their bodies.
However, if cond is false, then the execution of the corresponding operation is
suspended, i.e., the operation is in waiting mode until cond becomes true.

The generalised version of the guarded operation is ANY operation. The syntax of
ANY operation is ANY vars WHERE cond THEN body END. The operation
corresponds to a family of events or a parameterised event operation. It is triggered by
any acceptable values of the variables vars satisfying the condition cond. The
variables vars are then used as local variables in the operation body.

B statements that we are using to describe a state change in operations have the
following syntax:

S == x := e | IF cond THEN S1 ELSE S2 END | S1 ; S2 | x :: T |

S1 || S2 | ANY z WHERE cond THEN S END | ...

The first three constructs – assignment, conditional statement and sequential

composition (used only in refinements) have the standard meaning. The remaining
constructs allow us to model nondeterministic or parallel behaviour in a specification.
Usually they are not implementable so they have to be refined (replaced) with
executable constructs at some point of program development. The detailed description
of the B statements can be found elsewhere [1].

3.2 Development of Scopes and Roles

The specification of a scope describes general functionality of several collaborating
agents (in particular roles). The task of formal development is to use the specification
as the starting point for the derivation of specifications of the corresponding agent
roles (interfaces). To guarantee correctness of the resulting role specifications, we use
formal refinement and decomposition techniques. For example, Fig.2 shows that the
Lecture scope is decomposed into roles Student and Teacher defining functionality
of the corresponding agents.

On the other hand, we have to take into account scope nesting, when scopes have
embedded subscopes providing some extended functionality. Subscope specifications
can be naturally derived from the original scope specification via refinement. After
verifying the correctness of refinement, we can continue the development process by
decomposing the specification into corresponding roles as described above. In Fig.2,
we show how scope Lecture is refined by subscope Group work, which is
consequently decomposed into roles Student' and Teacher'.

Fig. 2. a) Orthogonal decomposition diagram b) its representation as a parallel refinement. SD
is scope decomposition; D – decomposition of a scope into roles; R – refinement.

As a result, we have two orthogonal development processes with the same starting
point – the original specification of a scope. Both developments arrive at role
specifications describing agent functionality in the corresponding scopes. However,
the hierarchy of scopes and subscopes should be reflected in the corresponding
specifications of agent roles. Hence the roles in subscopes must be the extensions of
the corresponding roles in the scopes. In other words, to guarantee the consistency of
developed roles, we have to show that the subscope roles refine the corresponding
scope roles.

In our Lecture scenario, we derived the specifications of agents in roles Student
and Teacher. These specifications describe the functionality of the corresponding
agents after joining scope Lecture. On the other hand, roles Student’ and Teacher’
describe the behaviour of the corresponding agents while they enter scope Group
Work which is a subscope of Lecture. These roles have to satisfy the requirements
specified in Student and Teacher. At the same time, they can provide additional
functionality specific to Group Work. By proving formally that Student’ is a
refinement of Student, and Teacher’ is a refinement of Teacher, we guarantee
consistency of agent behaviour in nested scopes Lecture and Group work. In Fig.2,
this is shown by the arrows connecting roles Student' and Student, and roles
Teacher' and Teacher.

Lecture

Lecture

Lecture

Student

Teacher

Group work
sub-scope

Group work
sub-scope

Lecture
Student’

Teacher
’

D

D

S
D

S
D

R

R

Lecture Scope

Group work
sub-scope

Student’ Teacher’

Student

Teacher

R

R
D

D

S D

3.3 Agent Design

Agent design starts with the selection of roles that the agent must implement. It is
permitted to implement any number of roles from different scopes. Initially roles
inside of an agent are totally independent specifications that may well correspond to
several independent processes running in an agent. Agent refinement specifies
additional operations that control agent behaviour during migration, location
selection, scope creation and joining, and other activities not covered by roles.

During agent refinement process, the agent roles can also be refined, possibly by
adding some new functionality. Due to the nature of refinement, the refined roles are
still compatible with the original abstract roles.

 Fig.3. Relations between agents, scope models and roles. D – decomposition of a scope into
roles; E – extension of role specification an agent model; R – refinement of an agent model.

We start building an agent specification by extending one or more roles obtained

formally through the decomposition of abstract scope models (see Fig. 3). The
refinement step introduces a specification of the minimal agent functionality called
the default role. It allows an agent to talk to locations, create/join/leave scopes, and
migrate. The agent may also need some logic that glues independent interfaces and
allows them to talk to each other. This is done via the global agent variables and the
special methods for accessing to them.

After the agent specification is ready, it is used to build the source code for the
actual agent program. The source is linked against the middleware library to get an
executable agent program. The generated agent source may run on PDAs, laptops,

Scope Model
S1

Scope
Model S2

Scope
Model S3

R11 R12 R13 R21 R31 R32

Agent A1 Model Agent A2 Model

R’12 R’13 R’21

Default role

Custom part

R’’13 R’’31

Default role

Custom part

R R

E E E E E

D D D

A1 A2

desktop PCs and smart-phones using the platform-specific middleware
implementation as the adaptation layer.

The standard work cycle of an agent looks like this: an agent detects the available
locations and connects to at least one of them, then looks for current activities on the
location(s) or creates its own new scope, and finally joins a scope and plays one of the
implemented roles in it. Only when the agent decides to play a particular role in a
scope, it really starts to cooperate with other agents. The agent is capable of
understanding its peers since the role functionalities of all the scope participants are
based on the same abstract model. As a result, the composition of agent functionalities
in a scope corresponds to the initial abstract model.

Fig. 4. An instantiation of an abstract model

The correctness of a model instantiation, or in other words, the fact that the scope
instantiates the corresponding abstract scope model, can be demonstrated by
analysing the agent design process and assuming that there is a correct transition from
agent model to agent implementation. In Fig.4 we illustrate an instantiation of an
abstract model which is formed when all the roles in the scope are taken by some
agents.

3.4 Fault Tolerance

Ability to operate in a volatile, error prone environment will be an intrinsic feature of
CAMA. Hence CAMA systems should be able to withstand various kinds of faults,
i.e., guarantee fault tolerance. The most typical fault is a temporal connectivity loss
which can cause failures of communication between cooperating agents or between an
agent and the location.

Since in the CAMA approach the agent and location software are developed from
the corresponding B specifications, the fault tolerance mechanisms should be already
integrated into these specifications, so that development of fault tolerance means is
becoming part of the system development. For example, while modelling
collaboration between agents in the specification of a scope, we have to define the
agent behaviour in the presence of message losses, hardware failures etc. Moreover,
while developing agent roles (interfaces) from the corresponding scope specifications,
fault tolerance mechanisms should be distributed between involved parties.

R’1 2 R’1 3 R’2 1

A1

R’’1 3 R’’3 1

A2

R1 2

R1 3

Instantiation of S1

Representing fault tolerance in CAMA constitutes an important research topic which
we will further investigate in our future work.

4 B Specification of the Middleware

To ensure correct behaviour of the location-based system, the middleware of the
location should enforce a certain discipline on agents. For instance, the properties of
the scopes defined upon scope creation are preserved in spite of volatile connectivity
and dynamic nature of scopes. Moreover, it should guarantee the integrity of the
information about agents in locations and scopes. These complex interdependencies
should be stated explicitly and verified. We have developed a formal specification of
the location middleware which is the core of the system. It corresponds to the most
complex part of the system and not only defines the operations that the location
provides to support communication between agents but also state the properties of the
data structures in the location. The actual middleware implementation will be based
upon this formal model. An abstract description of the location specification is
presented below. The full B specification can be found in [9].

MACHINE
 Location
VARIABLES
 AgentNames, /* Agents active in the location */
 Scopes, /* Created scopes */
 ScopeRolesTaken, /* A number of agents taken a particular role in a particular scope */
 AgentRoleData, /* Public data disclosed by the agent while taking a certain role */
 AgentScopes, /* For each active agent defines the scopes in which it is active */
 ScopeAttributes, /* Scope descriptions provided by scope creators */
 ScopeAgentRoles /* The roles taken by agents in active scopes */
INVARIANT
 Types of variables & interdependencies between data

INITIALIZATION
 Initially there are no agents and correspondingly no scopes in the location
 …
OPERATIONS

/* Engagement request */
a_id < --Engage =
 ANY Role_and_Data WHERE
 Role_and_Data is the information about the supported roles supplied by the agent
 THEN
 CHOICE
 successful engagement to the location by issuing valid ID to the agent via a_id and
 update of AgentNames and AgentRoles
 OR
 failed engagement to the location by issuing invalid ID to the agent
 END;
 END;

/* Disengagement request */

rr <-- Disengage = …

/* Scope creation request from an agent */
scope_id <-- CreateScope =
 ANY a_id, scopeDescr, role WHERE
 a_id is ID of the agent requesting to create a scope
 scopeDescr defines the necessary conditions for joining a scope
 role: the role that the requesting agent a_id will play in the created scope
 THEN
 CHOICE
 successful scope creation by issuing valid scope ID via scope_id,
 updating list of active scopes Scopes and list of
 scope descriptions ScopeAttributes updating AgentScopes,
 ScopeRolesTaken and ScopeAgentRoles
 OR
 unsuccessful scope creation by issuing invalid scope ID via scope_id
 END
 END;

/* Scope remove request */
result <-- DeleteScope = …

/* Scope join request */
result <-- JoinScope =
 ANY a_id, scope_id, role WHERE
 a_id is ID of the agent requesting to join the scope
 scope_id is ID of the scope which the agent is attempting to join
 role is the role which a_id will play in the scope
 THEN
 IF
 the agent a_id is not already participating in scope_id &
 requested role is a valid role for the scope &
 conditions for participating in the scope are not violated
 THEN
 the agent a_id is successfully joined the scope
 the information about the agent is updated
 in AgentScopes, AgentRoles, and ScopeAgentRoles
 the information about the number of agents playing the role is updated for the scope
 ELSE
 the agent a_id is rejected to join the scope
 END
 END;

/* Scope leave request */
result <-- LeaveScope = …

/* Prompt information about the scopes in which an agent can participate */
scopes <-- GetScopes = …
END

5 Conclusions

The presented work is tightly linked to the Ambient Campus case study of the
RODIN Project. One of the project goals is to develop the methodology (based on
formal methods) that would allow us to fully model and build the mobile location-
based systems. The requirements document (written for the Ambient Campus case
study) is the first step towards creating the formal model of such systems.

At the same time, we are developing middleware that will support our mobile agent
abstractions. This paper presents the formal B specification of the location, i.e., the
core part of the middleware. The choice of the location-based architecture (discussed
in [5]) has influenced all the parts of our work on the case study, including the
methodology.

It is our plan to investigate more closely the agent design process. We are also
planning to conduct several extensive experiments covering the full cycle of system
development – starting from an abstract system model through all steps until we get
running software.

Acknowledgments. This work is supported by IST FP6 RODIN Project.

References

1. J.-R. Abrial. The B-Book. Cambridge Univ. Press, 1996.

2. R. De Nicola, G. Ferrari, R. Pugliese. Klaim: a Kernel Language for Agents Interaction and
Mobility. IEEE Transactions on Software Engineering, 24(5):315-330, 1998.

3. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

4. D. Gelernter. Generative Communication in Linda. ACM Computing Surveys. 7(1): 80-112,
1985.

5. A. Iliasov, A. Romanovsky. Exception Handling in Coordination-based Mobile
Environments. Proc. of COMPSAC 2005. Edinburgh, (UK), July 2005. IEEE CS.

6. MATISSE Handbook for Correct Systems Construction. 2003.http://www.esil.univ-
mrs.fr/~spc/matisse/Handbook/
7. G. P. Picco, A. L. Murphy, G.-C. Roman. Lime: Linda Meets Mobility. Proc of the 21st Int.
Conference on Software Engineering (ICSE'99), Los Angeles (USA), May 1999.

8. Steria, Aix-en-Provence, France. Atelier B, User and Reference Manuals, 2001. Available at
http://www.atelierb.societe.com/index.html

9. B Specification of Location. Available from http://www.abo.fi/~Linas.Laibinis/Location.mch

